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TECHNICAL NOTE 3418

THE ZERO-LIFT WAVE DRAG OF A PARTICUTAR FAMILY OF
UNSWEPT, TAPERED WINGS WITH LINEARLY
VARYING THICKNESS RATIO

By Arthur Henderson, Jr., and Julia M. Goodwin
SUMMARY

On the basis of linear theory, the zero-lift wave drag of a particu-
lar family of unswept, tapered wings with linearly varylng thickness ratio
and symmetrical parsbolic-arc sections has been calculated. The case of
the wing with a given root. thickness retlo is glven primary consideration
in this paper with the view toward its use for missiles with all-movable
£ins where the root thickness must be large enough to allow for & rigid
attachment to the trunnion and controlling mechenism. By comparing the
drag for these wings with that for a corresponding constant-thickness-
ratio wing with rhombic sections, it is found that the variable-thickness-
ratio wings can be used to advantage with no serious structural penalties
if the wings are assumed to have the same given root thickness ratio or
the same internal volume.

INTRODUCTION

Zero-1lift drag calculations have generally not been mede for tapered
wings with curved surfaces because the thickness functions, from which
the source distributions are obtained, are usuaslly of such a nature that
the drag equations are nonintegrable, although in some cases pressure
distributions may be found. References 1 and 2 present a numerical method
for computing the pressure wave drag of deltea and arrow plan-form wings;
reference 1 is for biconvex, constant-thickness-ratio sections, and ref-
erence 2 determines the minimum wave drag for constant-thickness-ratio

wings.

By modifying the equation which desecribes the surface of an unswept,
tapered wing of biconvex section and constant thickness ratio, for which
the drag has not yet been found enalytically, an unswept, tapered wing of
biconvex section and linearly varying thickness ratlo is obtained for
which the drag can be found. This is not a completely general wing in
that the taper ratio is equal to the ratio of the tip thickness ratio to
root thickness ratio. Nevertheless, it i1s of immediate practical interest,
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particularly as.epplied to missiles with all-movable controls for which
the primary considerstion often is that the root thickness be large
enough to allow for a rigid attachment of the wing to the trunnion and
controlling mechanism without 1ncurring any large stress concentrations.
Since missile wings are often subJected to large, instantaneous deflec-
tions, the Juncture of the wing and trumnion must be well designed.

The unswept wing was chosen for this investigation becsuse, for the
higher Mach numbers at which missiles and future aircraft will be oper-
ated, the unswept wing is generally superior to the swept wing as far as
drag is concerned. As an 1llustration, figure 1, which is taken from
figure 10(b) of reference 3, 1s presented. Figure 1 presents the ratio
of the drag coefficient of & rectangular wing to the drag coefficient
of an untapered, sweptback wing of the same aspect ratio (A = 5), plan-
form aree, thickness ratio, and parabolic-arc section &s a function of
Mach number for varlous angles of sweepback. After the leading edge of
the sweptback wing becomes supersonic, the drag characteristics of the
rectangular wing are seen to be as good as or superior to those of the
sweptback wing. As the Mach number increases, the angle of sweepback
necessary to reduce the drag below that of the rectangular wing becomes
structurally unfeasible; therefore, the rectangular wing 1s preferable
to the sweptback wing at the higher Mach numbers.

For a glven thickness at the root, which is the primary concern in
this paper, an unswept, tapered wing will have better drag charascter-
isties than a rectangular wing of the same aspect ratio and plan-form
area because the tapered wing will have a larger root chord and, conse-
quently, a lower thickness ratio. A further decrease in the drag can be
obtained by retalning the tapered plan form and the given root thickness
ratio but reducing the local spanwise thickness ratio. Of course, this
spanwise reduction in thickness ratio increases the local bending stresses

so that, for any particular epplication, a satlsfactory compromise between

allowable stresses and drag reduction must be reached.

Since the higher Mach numbers are of interest and the wing of the
present peper is unswept, the drag calculations have been made only for
the case of supersonic leading edges.

SYMBOLS

A aspect ratio, ksz/s

Cp wave-drag coefficient, D/¢S
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CDR wave-drag coeffilcient of rectangular wing
CDS wave-drag coefficient of sweptback wing
e(y) local chord
. root chord
b wave drag
F frontal area
I (¥) moment of inertia about local chord
K = 2(1 - A)

1+
M Mach number
m(y) local bending moment

ep(1 - A)

N sweepback parameter, 55 tangent of leading-edge

sweepback angle
Ap local pressure minus free-stream pressure

q dynamic pressure, —;-pve

ri;&gx,;

r
S plan-form area

8! area of integration

8 semispan

t(y) maximum local thickness of wing
t meximim root thickness

t skin thickness
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v free-stream velocity
vy internal volume
W vertical perturbation velocity
X,¥,2 Cartesian coordinates
B=yM2 -1
A leaeding-edge sweepback angle
Tip chord
A wing taper ratio, —————
ne tape ’  Root chord
€, coordinates of source point
P free~stream density
t
m(y)—g)—
a(y) maximum local bending stress,
Tex(¥)
t(y)
T(y) local thickness ratlo
> ely)
tr
Ty root thieckness ratio, =
r
@ perturbation velocity potential

Unless otherwlse denoted, primed symbols refer to the constant-
thickness~ratio wing.

ANALYSTS

The surface of the varisble-thickness-ratio wing of the present
investigation has parabolic-arc sections as described by the equation

2 2
z = 2'rrcr[g—c; - (Ex;) - N% + Ne(azr-) ] (1)
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The meximum-thiclness line is at x = cr/2. The projection of the
maximm-thickness line on the yz-plane is described by

2
Z =E.I_‘l - 2Nl)
2 Cyr

and the thickness ratio is

t(y) (y) = Tr(l - aq.%) (2)

By using the definition of N, equation (2) may be rewritten as

Tw0=7rﬁ—(1-k%] (3)
from which
Tis) - )

Thus, the wing which 1s treated herelin is not completely general in
that the ratioc of the tip and root thickness ratios is directly related
to the taper ratio. Nevertheless, equation (1) does allow the drag to
be ecalculated for curved-surface airfoils of practicel interest, as men-
tioned previously.

The linearized partlsl-differential equation for the perturbation
potential in steady supersonic flow 1s

2 2 2
239 3¢ 3P _
%2 dy?  dz?
If the disturbances are assumed to be small, the boundary conditions

on the surface of a thin, symmetrical wing at zero angle of attack msy be
satisfled to the first order in the plene of the wing. Hence

@), o

g dx

B (5)

z=Q

Reference 4 shows that 'a solution of equation (5) which satisfies condi-
tion (6) is, for a source distribution,
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1 w(k,n) at an
’ se = (7)
B(x -Y)Z=O 1(\/];, \/(x i 5)2 i Bz(y j 1])2

dz(g,'q)

where w(&,n) = 3t V 1s proportional to the source strength per

unilt srea.

To the first order, the pressure in the plane of the wing is given

by
p =__2_(%)
a v ax 7=0 <8)
The drag is expressed as
D 4p 4z
qQ ﬂ, q I W (9)

and can be found by either of two essentially equivalent approsches.

The first method follows from reference 5 and is the more general
of the two procedures. B8ince, for the zero-lift case, the potential in
the =z =0 plane off the wing is zero, the potential at any point on
the wing is the integrated effect on that point of all the sources within
the wing boundaries which can influence thet point. Thus, the wing of
flgure 2 has five regions of influence. The potential for each region
can be found by integrating equation (7) over the ares bounded by the
wing plen form and the Mach lines which are drawn forward from the
arbitrary point of each region. In practice, however, it 1s necessary
to perform the integration only for the arbitrary point of region (5),
since the potentlal for each of the other four reglons consists of the
appropriate real parts of the potential of region (5). The drag can
therefore be found from equation (9) by integrating the product of the
slope and the pressure for region (5) over the whole plan form and taking
the approprlate reel parts of the result.

The second method consists of the superposition of source distribu-
tions, a procedure which is described in reference 6. Although this
method is not so straightforward as the first, its use 1s often advanta-
geous, particularly if some previously calculated results are epplicable,
es was the case with the present paper. As shown In figure 3, there are
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three regions over which equation (9) is applicable, subject in all three

Egi;:zg—(supersonic
1+A

cases to the condition that B > K, that is PBA >

leading edges). These reglons are:

Region I: B Z 2

Region IT: 12?‘ <B<2iB>K

Region III: 0< B < —2A

Thus, if & wing has a configurstion with respect to the Mach lines that
fits region II, the functions of equation (9) relating to regions I and II
are real, and those for reglon III are imaginary.

The drag functlons obtained from equation (9) have been evaluated by
the second method and are given in the appendix for the three different
regions. The drag is plotted in figure 4 as a function of B = BA and A.

RESULTS AND DISCUSSION

In addition to having good drag characteristics, a practical wing
must be structurally sound. In order to ascertain the relstive drag and
structural properties of the present wing, the drag and maximum local
bending stresses of the varlable~thickness~ratio wing asre ccmpared with
the same properties of a corresponding constant-thickness-ratio wing.
The results for the constant-thickness-ratio wing which has rhombic sec-
tions are obtained from reference T.

Given Root Thickness Retio

Since the main application of the present wing 1ls to missiles with
all-movable fins where the thickness at the root must be sufficient for
a rigid attachment of the wing to the trunmnion and controlling mechanism,
the dreg and struetural characteristics of & variable- and a constant-
thickness-ratio wing of the same plan form should be made on the basis
that they both have the same root thickness ratio. If primed symbols
denote values pertaining to the constant-thickness-ratic wing (cbtained
from ref. T) and unprimed symbols represent the variable-thickness-retio
wing, the ratio of the drags of the two wings on the basis of a given
root thickness ratio is
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' op'p/r,t?

Equstion (10) is presented in figure 5, from which CD/GD' is seen to

be a strong function of A, with drag reductions obtained for values of
A less than about 0.70.

It should be noted thet the constant-thickness-ratio wing used for
comparison has rhombic sections, which mskes GD/CD' less favorable
than 1f it had parsbolic-arc sections (that is, for a given thickness
ratio, a rhombic section has less wave drag than a parabolic-arc section).
According to reference 8, iIf a constant-thickness-ratio wing has
parabolic-arce sections, all values of CD/CD' should be multiplied by

0.75.

As indicated by linear theory, two identical plan forms at the same
angle of attack will have the same 1lift distribution and, consequently,
the seme local bending moment. Since the maximum local bending stresses

are

m(y)t(y) (11)

_1
o(y) = 5 I (7

the ratio of the maximum local bending stresses of the solid varisble-
thickness~ratio wing to the constant-thlckness-ratio wing is

oly) _ t(3) I ()
o'(y)  I(y)e'(y) (12)
Now,
t(y) = 7(y)ely) (13)
and
T.E.(y) pz(x,y)
s efL.E.(y) L z2dz dx (1k)

Therefore,
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2
ot (y) 2 ¥ 2
Bur, 21 - (1 - N
which, on the baslis of given root thickness ratios, becomes
a(y) ] _ 35 16
[U—(-, L (26)

a 2
solid @@-(1_mg

Tmplicit in equation (15) is the assumption of solid wings. For
large wings where, in order to reduce the weight, a hollow wing construc-
tion is used, calculation of I,,, based on the assumption that the skin
carries all the load, will probably more nearly represent the true state
of affairs than does equation (15). For a wing with constent skin thick-
ness tg, where x, 1is the point on the x-axls where hollowness begins,

T = hﬁxl(ﬂ LZ(X’Y) z%dz dx + hfc/a fz(x’y) 22dz dx (17)
. Z

E.(y) x1 (¥) Y 2(x,¥)-tg

from which, by using equation (12),

o) e
at(y) 2 3

hollow 8, Ej_ - (1 - 7\)%'.]
2
1 - z 1i- z + x” 5
1- (-0 1- (-0 @-(1-70%]
/2
2r

1«41 -

b

(18)
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If the term to the 7/2 povwer 1s expanded and r 18 allowed to
approach zero, then

ofy) _ 357,12

, (19)
[+) (y) 561‘1.2[1 _ (l - 7\).%]

which, for given root thickness ratios, is -

o(y) ] 35
LR - - (20)
[U (%) hollow 5,6[1 - - 7\)%]

Equations (16) and (20) are plotted in figure 6, where the solid lines
are for the solid wing and the dashed lines are for the hollow wing which
has a sgkln thickness that approaches zero. The hatched portlon between
each set of solid and dashed lines represents varylng degrees of skin
thickness. Fram this flgure it may be seen that & hollow variable-
thickness-retio wlng generally compares more favorably with a hollow
constant-thickness~ratio wing than the solld wings do.

A comparison of figures 5 and 6 reveals that, as the taper ratio is
decreased below sbout 0.70, increasingly lerge drag reductions are
obtalned but with correspondingly large lncreases in the ratios of local
bending stresses, especilally 1n the vicinity of the tip. Within limits,
however, this increase in outboard bending stresses 1s not serious. In
figure T the ratlo of local bending stresses to root bending stresses of
a solld wing with a constant thickness ratio is plotted against the span-
wise position, as an illustration. The curves are based on the conserva-
tive assumption of constant pressure distribution. It may be seen that,
for all but the case of A = 0, the outboard Bections are highly under-
stressed. Thst is, from & structural standpoint, in all but the case of
A = 0, a constant-thickness-~ratio wing westes material.

As & matter of interest, the drag and bending moment of the two
winge can also be campared on the basis of given frontal area and given

volume.
Given Frontal Ares

The projected frontal area of a wing is

F = 2/: t(y) ay (21)
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from wnich

F =I£§ﬁ(l+7\+7\2) (22)

pro= 12 %51 4 9 (23)

For F =F' with all plan~form dimensions the same,

3 (1 )
R G )

(2k)

Substituting equation (24) into equations (10), (15), and (19), on
the basis of a given frontal area, ylelds

Cp _ 91+ 7\)2 CDB/TI‘E (25)

Cp' (1 + n+ N2 CD'B/Tr'z
FU(Y) :l _ 55(1 + N+ ?\2)2 (26)
ot (y) 0114 B 2

s 1h(1 + 7\)2[1 - (- 7\)§]
2

[cr(y) ] _ 351 + A+ A2) (1)
o' (y)

hollow 126(1 + 7\)2[1 -1 - 7\)%’-]

Equations (25), (26), and (27) are plotted in figures 8 and 9 and show
that, for all taper ratios, the drag of the varisble-thickness-ratio wing

ie higher than the drag of the constant-thickness-ratio wing, whereas the
stresses in the wing are lowered. _
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Given Volume
The internsl volume of a wing is
T.E.(x)
f f z(x,y)dx dy
L.E.(x)
from which,
Trcrzs 2 3
Vy = 3 @.+ A+ AT+ A )

'r'2

C, B
Vi' = —%r(l + K + 7\2)
For V; =Vy' with all plan-form dimensions the same,

=Tr'(l+7‘+7\2)
1+ A+ A2+ A

r
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(28)

(29)

(30)

(31)

Substituting equation (31) into equations (10), (15), and (19), on

the basis of a glven Internal volume, ylelds

2
o _ (en+2)  cpfr®
" (14 n+ a2+ W) CpBfrE

[c(y) ] ) s5(1 ¢ n+ 28+ W)

" Wlgo11a 6h(1 + A + 7\2)2[1 - {1 - x)g]a
[o(y) ] _ B eae A A
a'(y)

7
notiow 561 + A+ A2) [1 - (1 - 7\)%’-]

(32)

(33)

(34)
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Equations (32), (33), and (3%) are plotted in figures 10 and 11.
These figures show that drag reductions are obtained for all taper ratios,
whereas the structurel characteristics are scmewhat worsened by comparison
with the constant-thlckness-ratioc wing. Reference to figure 7, however,
shows that, within 1imits, these poorer structural charecteristics are
tolereble.

CONCLUDING REMARKS

On the basis of linear theory, the zero-1lift wave drag of an unswept,
tapered wing with linearly verying thickness ratio and parabollc-arc
sections has been calculated. Although this wing is not completely
general, in that the ratio of the tip thickness ratio to root thickness
ratio is equal to the taper ratio, it 1s nevertheless of immediste practi-~
cal interest for such applicatlons as missiles with all-movable fins where
the primary consideration 1s often that the thickness at the root be suf-
flclent to allow a rigid attachment of the wing ‘to the trunnion and con-
trol mechanism.

The drag and bending-stress characteristics have been compared with
the corresponding characteristics of a consbent-thickness-ratio wing of
the seme plan form but with rhomblc sections on the basis of the same
root thickness ratio, the same frontal area, and the same internal volume.

For the case of the same root thickness ratio, the primary concern
of this paper, the ratio of the drag of the variable~thickness~ratioc wing
to the drag of the constant-thickness-ratio wing becomes less than 1.00
at a taper ratio of about 0.70. Decreasing the taper ratlo decreases
the drag ratio but increases the ratio of local bending stresses of the
varisble~thickness-ratio wing to the local bending stresses of the
constant-thickness-ratio wing. This bending-stress ratio is a maximum
gt the tips. However, inasmuch as most constant-thickness-ratio wings,
when designed for a given root bending moment, will be understressed
outboard, an outboard increase 1n bending stress is not too serious,
within limits. :

Although the wings with the same frontal area were better structurally
than those in the preceding case, the drag was adversely affected for all
taper ratios.

For the wings with the same internal volume, the drag ratio 1s less
than 1.00 for all taper ratios and, although the outboerd stresses are
Increased slightly over those for the case of the same root thickness
ratio, a limited inerease In ocutboard bending stresses 1s not
obJjectionable.
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It appears, therefore, that for the cases of the same root thickness
ratio and the same internal volume, a satisfactory compromise between drag
and stress considerations can be reached which willl allow the present wing
to be used to advantage.

Langley Aeronsutical Isboratory,
Netional Advisory Committee for Aeronsutics,
Langley Field, Va., January 17, 1955.
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APPENDIX
DRAG FUNCTIONS

The drag functions (eq.(9)) have been evaluated for the three regions

indicated in figure 3 where BA > 21 - or B > K. These functions
1+ A
are:
For B2 2,
(%B) _ 1268 B0 - op™k2 4 1082 - 10 s
=) = A
Tr 1 w(1 + 7\)2 B2 - K2 lEK(B2 _ Kg)a
a(8% - a®)| 1k, 3B - 288%2 + 10K
12x (52 - x2) N
G ) BN (A1)
12(82 - k2) 1282 - K2
For T+ = B< 2,
Fl
(CBE) ) (ig) * 1288 WE2 o) BN -Ma -
o \T1 =(L + N2 Ve2 - @ 13((132 2 Ka) =
(a -.7\)5\]132 _Kaloge 24+ Vi g2 +{32(7B" - 2083 & 5x*)
62 B 12x(s2 - K2
aNz? - ) 2(=m? - ¥B) M 1B N +M1L-N
w2 - )  x(®.-x?) X s
-138% + 67822 - aax“_+ A 2882 - 23x2) I S 4 (x+NVh - 82 (a2)
36(82 - 52)5/2 36(82 - K‘?)ﬂé %6 Ve2 - 2 12\s® - ] ¢
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For 0<B < _2A
= =1+ A

(CDf’) - <CD5) . 1288 -88° + oia"k® - 158%k% + 4x6 .
TII IT K2

Tr T x(2 + A2 VB2 - 12%(52 - ¥2)°

(282 - k2)  22(=m2 - x2) e Plaoel BB e NE 4 a1 - ) |
x(p2 - k) x(82 - %) 3K 2B(1 + )

103‘*-57321cz+121c‘*_7\(631‘+1+032x2-5618‘)+
5/2 3/2
36(B2 - k2) 722(82 - K2)

22082 + 51%) _ 23 y8? - [P - 8P+ 2,

W o 1= 2
(- n2Vs® - Ka[%lca(a +22) - 221 - 7\)2] ;o_se 2+ {10 - 5% + ) (a3)
121 | B(L + A)

These equations are indeterminate for the case of A = 1. In the
limit as A-—>»1, they reduce to '

CpB\ _ 16
(:E =3 (Bl)
r /1
CpB 16
(;—2) =3 (45)
r /II
Cof\ 22|l BY1-82 Bl6-82), 1+ 132 (46)
v iy 4 y e B
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Figure 1.~ Variation of ratlos of wave-drag coefficient of rectangular
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Figure 2.- Reglons of influence for determining pressure distribution of
an unswept, tapered wing.
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Figure 3.~ Regions of applicability of equation (9).
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Tigure b4.- Variation of zero-1ift wave-drag coefficient of unswept wings
having linearly verying thicknmess retios end paraholic-arc sectlons
with PpA for various values of taper ratio.
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Figure 5.- Variation of ratios of wave-drag coefficients of variable-
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BA for various velues of taper ratio.
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